百度EasyDL定制化图像识别平台识别海洋鱼类

鱼类识别对渔业资源的开发利用有着重要的意义。针对海底环境恶劣,拍摄环境亮度低,场景模糊的实际情况导致海底观测视频品质差,视频中的鱼类识别难的问题以及现有鱼类识别方法存在的鱼类标注数据集过少导致训练的深度模型准确度不高的问题。

【方法】本文提出了一种基于百度EasyDL定制化图像识别平台的海底鱼类识别方法。首先使用伽马校正法和暗通道先验算法对图片数据进行预处理,提高图片亮度和清晰度,接着利用百度EasyDL定制化图像识别平台构建初鱼类识别模型,再使用数据增强等方法对模型进行调优,提高模型识别能力。

【结果】实验结果表明,与其他识别方法相比,该方法可以有效提高鱼类识别的准确率。

鱼类不但有一定的食用价值,而且还有很高的药用价值,所以世界各国对鱼类资源的开发和利用都非常重视,在对鱼类资源开发过程中,必须对鱼类进行识别,了解其分布情况,但鱼的种类繁多,形状大小相似,识别起来较为困难。因此研究鱼类识别的方法,对我国渔业资源的开发利用具有重要的学术价值和经济价值,对于鱼类的分布情况,传统的研究方法以出海捕捞为主,使用延绳钓探捕,拖网探捕等常用捕捞技术。这种传统调研方式固然有效,但是对于相关科研人员来说,由于调研过程周期长,耗费资源太多,而且结果存在一定的延迟性,大大影响研究人员研究成果的质量。还有基于声呐系统的方法,对鱼体回波信号进行处理分析,从声学信号中提取适于分类的特征进行识别,但是由于声呐系统会对鱼类造成一定的伤害,所以也不能频繁实施 针对上述问题,国家于“十二五”期间提出将全面推动国家海底观测平台的建设,其中就包括通过部署水下摄像器材来实时监控关键海洋生物的重要务,这样就可以通过分析观测视频来代替出海调研,而且保证了获得数据的实时性,能够极大地提高科研人员的研究效率。
海洋鱼类识别系统
传统的机器学习方法用于鱼类识别的实现过程为:获取鱼图像,提取特征,构建分类器,将特征向量输入分类器以实现种类识别如:Phenoix等人[1]采用贝叶斯和高斯核混合模型对鱼类特征进行分层分类的方法来实现鱼的分类识别;杜伟东等人[2]提出了一种提取多方位声散射数据的小波包系数奇异值,时域质心及离散余弦变换系数特征,并进行特征融合,最后用支持向量机分类的鱼识别方法;虽然这些方法都可以实现鱼类识别,但是这些方法这类方法已不适用于当前的视频或图片数据,并且方法严重依赖于人工选择特征,而人工选择特征往往只能选择表层特征,很难挖掘出有鉴别力的特征。

和传统机器学习方法相比,近年来崛起的深度学习方法以数据为驱动,能够从大量数据中通过卷积等操作自动学习特征表示,很好的解决了人工选择特征的问题.Abdelouahid等人[ 3]和顾郑平等人[4]都提出了采用深度网络模型进行鱼类识别的方法,虽然这些方法在识别性能上都取得了引人瞩目的效果,但是依然存在以下问题:模型识别性能的提高需要大量的鱼类标注数据集用于学习训练,而标注数据工作费时且昂贵,故在实际应用中难以满足。

为此,针对以问题,本文提出了一种基于百度EasyDL定制化图像识别平台的海底鱼类识别方法。利用百度EasyDL定制化图像识别平台解决目标数据集训练数据过小和数据分布差异问题,而且通过引入伽马校正法和暗通道先验算法对数据进行预处理,使数据特征具有更好的辨别能力,同时使用数据增强方法对模型进行调优,使得训练得到的模型的泛化性更强。

海底观测平台的系统结构如图1所示,位于海面以下的水下接驳器统一接收来自各个传感器的采集数据,包括水下摄像器材采集的视频数据,然后将数据传输至位于陆地上的岸基站。岸基站接收并缓存所有来自海底的数据,按约定的协议和规则转发给大数据中心。大数据中心由多个子系统构成,负责对不同类型数据的转化,存储,处理,分析,其中包括本文将要研究的海洋鱼类识别系统,负责对海底观测视频的处理分析。本文采用开源计算机视觉工具软件的OpenCV来读取视频数据,将视频分解为图片帧,同时使用背景差分算法过滤无用帧后,针对每一帧进行预处理和识别分析。

2.2数据预处理

由于海底图像对各种噪声和干扰是比较敏感的,在不同光照条件下,悬浮物等都对最终成像和识别有很大的影响。而且从图像的形成过程考虑,图像采集是将一个三维目标映射成为一幅二维图像,不可避免会有信息的丢失,所以本质上图像就具有一种模糊性。另一方面由于海水的能见度低,透明度只有空气的千分之一,使得采集到的图像信噪比较低,纹理模糊。再次由于海洋中各种悬浮物的存在,也会对光波(也就是电磁波)产生散射和吸收作用,导致采集到的海底图像产生严重的灰白效应。再加上海流的影响以及摄像机镜头的抖动等因素,造成图像部分失真现象等因素都会影响最终识别的效果

deepcar作为一个人工智能教育类产品,图像识别技术也极其重要,我们也会依托于百度EasyDL定制化图像识别平台,构建无人驾驶技术的相关拓展性功能,在数据分析以及数据预先处理上,加快识别效率,完成平台的良好生态培养工程,服务于更多的技术开发者和朋友

发表评论

电子邮件地址不会被公开。 必填项已用*标注